
8-1

Chapter 8
Security

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

8-2Network Security

What is network security?

confidentiality: only sender, intended receiver should

“understand” message contents

 sender encrypts message

 receiver decrypts message

authentication: sender, receiver want to confirm identity of

each other

message integrity: sender, receiver want to ensure message

not altered (in transit, or afterwards) without detection

access and availability: services must be accessible and

available to users

8-3

Application Layer2-3

Socket programming

goal: learn how to build client/server applications that

communicate using sockets

socket: door between application process and end-

end-transport protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

8-4

Application Layer2-4

Socket programming

Two socket types for two transport services:

 UDP: unreliable datagram

 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

8-5

Application Layer2-5

Socket programming with TCP

client must contact server

 server process must first be

running

 server must have created

socket (door) that

welcomes client’s contact

client contacts server by:

 Creating TCP socket,

specifying IP address, port

number of server process

 when client creates socket:

client TCP establishes

connection to server TCP

 when contacted by client,

server TCP creates new socket

for server process to

communicate with that

particular client

 allows server to talk with

multiple clients

 source port numbers used

to distinguish clients

(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

8-6

Application Layer2-6

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

8-7Network Security

SSL: Secure Sockets Layer

widely deployed security

protocol

 supported by almost all

browsers, web servers

 https

 billions $/year over SSL

mechanisms: [Woo 1994],

implementation: Netscape

variation -TLS: transport layer

security, RFC 2246

provides

 confidentiality

 integrity

 authentication

original goals:

 Web e-commerce
transactions

 encryption (especially
credit-card numbers)

 Web-server authentication

 optional client
authentication

 minimum hassle in doing
business with new
merchant

available to all TCP
applications

 secure socket interface

8-8Network Security

SSL and TCP/IP

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

 SSL provides application programming interface

(API) to applications

 C and Java SSL libraries/classes readily available

8-9Network Security

Toy SSL: a simple secure channel

 handshake: Alice and Bob use their certificates,

private keys to authenticate each other and

exchange shared secret

 key derivation: Alice and Bob use shared secret to

derive set of keys

 data transfer: data to be transferred is broken up

into series of records

 connection closure: special messages to securely

close connection

8-10Network Security

Toy: a simple handshake

MS: master secret

EMS: encrypted master secret

8-11Network Security

Toy: key derivation

 considered bad to use same key for more than one

cryptographic operation

 use different keys for message authentication code (MAC) and

encryption

 four keys:

 Kc = encryption key for data sent from client to server

 Mc = MAC key for data sent from client to server

 Ks = encryption key for data sent from server to client

 Ms = MAC key for data sent from server to client

 keys derived from key derivation function (KDF)

 takes master secret and (possibly) some additional random data

and creates the keys

8-12Network Security

Toy: data records
 why not encrypt data in constant stream as we write it to

TCP?

 where would we put the MAC? If at end, no message integrity

until all data processed.

 e.g., with instant messaging, how can we do integrity check over

all bytes sent before displaying?

 instead, break stream in series of records
 each record carries a MAC

 receiver can act on each record as it arrives

 issue: in record, receiver needs to distinguish MAC from
data
 want to use variable-length records

length data MAC

8-13Network Security

Toy: sequence numbers

 problem: attacker can capture and replay record

or re-order records

 solution: put sequence number into MAC:

 MAC = MAC(Mx, sequence||data)

 note: no sequence number field

 problem: attacker could replay all records

 solution: use nonce

8-14Network Security

Toy: control information

 problem: truncation attack:

 attacker forges TCP connection close segment

 one or both sides thinks there is less data than there

actually is.

 solution: record types, with one type for closure

 type 0 for data; type 1 for closure

 MAC = MAC(Mx, sequence||type||data)

length type data MAC

8-15Network Security

Toy SSL: summary
e

n
c
ry

p
te

d

bob.com

8-16Network Security

Toy SSL isn’t complete

 how long are fields?

 which encryption protocols?

 want negotiation?

 allow client and server to support different

encryption algorithms

 allow client and server to choose together specific

algorithm before data transfer

8-17Network Security

SSL cipher suite

 cipher suite
 public-key algorithm

 symmetric encryption algorithm

 MAC algorithm

 SSL supports several cipher

suites

 negotiation: client, server

agree on cipher suite

 client offers choice

 server picks one

common SSL symmetric

ciphers

 DES – Data Encryption

Standard: block

 3DES – Triple strength: block

 RC2 – Rivest Cipher 2: block

 RC4 – Rivest Cipher 4:

stream

SSL Public key encryption

 RSA

8-18Network Security

Real SSL: handshake (1)

Purpose

1. server authentication

2. negotiation: agree on crypto algorithms

3. establish keys

4. client authentication (optional)

8-19Network Security

Real SSL: handshake (2)

1. client sends list of algorithms it supports, along with

client nonce

2. server chooses algorithms from list; sends back:

choice + certificate + server nonce

3. client verifies certificate, extracts server’s public

key, generates pre_master_secret, encrypts with

server’s public key, sends to server

4. client and server independently compute encryption

and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages

6. server sends a MAC of all the handshake messages

8-20Network Security

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

 client typically offers range of algorithms, some

strong, some weak

 man-in-the middle could delete stronger algorithms

from list

 last 2 steps prevent this

 last two messages are encrypted

8-21Network Security

Real SSL: handshaking (4)

 why two random nonces?

 suppose Trudy sniffs all messages between Alice
& Bob

 next day, Trudy sets up TCP connection with
Bob, sends exact same sequence of records

 Bob (Amazon) thinks Alice made two separate orders
for the same thing

 solution: Bob sends different random nonce for each
connection. This causes encryption keys to be different
on the two days

 Trudy’s messages will fail Bob’s integrity check

8-22Network Security

SSL record protocol

data

data

fragment

data

fragment
MAC MAC

encrypted

data and MAC

encrypted

data and MAC
record

header

record

header

record header: content type; version; length

MAC: includes sequence number, MAC key Mx

fragment: each SSL fragment 214 bytes (~16 Kbytes)

8-23Network Security

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

data and MAC encrypted (symmetric algorithm)

8-24Network Security

Real SSL
connection

TCP FIN follows

everything

henceforth

is encrypted

8-25Network Security

Key derivation

 client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
 produces master secret

 master secret and new nonces input into another
random-number generator: “key block”
 because of resumption: TBD

 key block sliced and diced:
 client MAC key

 server MAC key

 client encryption key

 server encryption key

 client initialization vector (IV)

 server initialization vector (IV)

